Learning Integrated Work: inter-organisation collaborators reflect on providing an authentic learning experience for multimedia project teams

Authors:
Ashley Holmes, CQUUniversity Australia
a.holmes@cqu.edu.au
Ruth Kinslow, (formerly) Queensland Alumina Limited
R.Kinslow@cqu.edu.au
Michael Pope, Queensland Alumina Limited
popems@qal.com.au

Keywords: work integrated learning, authentic, multimedia, collaboration, engagement, project, team, Queensland Alumina Limited, CQUUniversity Australia, interactive, maintenance, training, manual, workplace, education, audiovisual, virtual

Abstract

This paper outlines the experience of initiating and sustaining an authentic, team-based, work integrated learning experience for advanced university students of collaborative multimedia design and production. It is a reflective account of how the needs of both organisations involved came to be addressed, creating a win-win outcome for the industry partner and the university. Unusual aspects to do with the distance study mode of the students and the requirement for virtual collaboration are showcased. In the analysis, the difficulties experienced in initiating and sustaining such an inter-organisational relationship, especially where there is no direct vocational interdependency and so no supportive administrative framework, are highlighted.

Introduction

It has been argued that, in the context of both undergraduate and post-graduate university education, work integrated learning opportunities, sometimes also known as cooperative learning or industry placements; do not typically fit a particular paradigm (Keleher et al 2011). Generally speaking, the primary objectives are to enhance students’ experience of a profession, to develop their work readiness, and to provide opportunities for interaction between the university and industry stakeholders with the aim of ensuring that the development of theoretical knowledge and skill is congruent with the needs of industries. A common form of work integrated learning is that where, as part of study and assessment, an individual student is ‘seconded’ to take on a particular part-time or full-time position—sometimes paid, sometimes voluntary—within an organisation for a defined period. This paper outlines a work integrated learning collaboration atypical to that norm. Two teams, one from the Queensland Alumina Limited business improvement area and the other from CQU University Australia undergraduate multimedia degree capstone course, each in the pursuit of separate organisational objectives, commit to ‘client’ and ‘contractor’ roles and realise projects that achieve mutually satisfying outcomes.

This paper provides a reflective account co-written from the points of view of both organisations involved. On the one hand, there is a business improvement coach, working with a mature age
maintenance crew trainee and senior engineers to capture tacit knowledge at risk of loss through retirement to incorporate this knowledge meaningfully with other work process documentation. On the other hand, there is an academic course coordinator who supervises members of student teams as they undertake a prescribed course of collaborative project engagement. Because of the regional footprint of the university the team members are widely geographically dispersed over vast distances and are studying in distance mode. Some team members do not meet each other, their supervisor, or their client face to face. They are charged with project planning and production using virtual communication modes under a rigorous program of learning and assessment. Interactive multimedia workplace training manuals are the tangible product resulting from this collaboration. The authors discuss the challenges involved in bridging dissimilar organisational cultures and geographical distances. They reflect that there are numerous benefits—tangible and intangible—for all parties involved.\(^1\)

The back-stories:

1/ Queensland Alumina Limited: pump maintenance training at Gladstone

During the period 2004 to 2008 the culmination of numerous workplace initiatives within a particular section of the high pressure alumina refinery plant of Queensland Alumina Ltd (QAL) at Gladstone in Central Queensland gave rise to imperatives for action. Routine hazard reduction audits, procedural reviews and the requirements of competency-based training for pump maintenance crews had identified potential risks in that refinery environment consistent with those foreshadowed in literature about hazardous environment risks in general (Nicol 2001, 21). A major risk, common in mature industries and their ever more rapidly changing workplace environments, is that key technically experienced staff with long-term knowledge of plant design, operation and maintenance are, for a variety of reasons, unable to transfer vital plant specific and tacit knowledge at a pace that keeps up with their rate of attrition (Hislop 2009, 132-135). This is in spite of vocational institution and embedded corporate workplace programs for the training of new staff coming through to replace them.

Industry-based knowledge management programs institute a variety of methods of documenting and passing on corporate knowledge including: word of mouth; written procedures that instruct specific ‘job safe procedures’; picture process maps that graphically outline information and chart process; ‘work packs’ that combine the technical and procedural detail of the written information with the observational acuity of the photo media; audiovisual instruction including video and digital multimedia presentation.

To varying degrees all of these categories of information either existed or were in the process of being captured. However, a need was identified for a unified compilation and synthesis which could combine the various modes into a format useful for dissemination for the purposes of training and ongoing reference whether on location in the plant or in the workshop.

2/ CQUUniversity Australia: collaborative multimedia courses

Tertiary education providers in the constantly changing field of digital media production are challenged to equip graduates with skills relevant to industry needs. In one recent survey Haukka

\(^1\) A companion paper (Holmes 2010) discusses the projects from a knowledge conversion perspective.
(2010, 14) found that 36% of employers in Australia’s creative digital industries reported that it was difficult or very difficult to recruit aspiring creatives with the ‘right’ skills and attributes. Research on how creative production skills are typically applied throughout all sectors of industry (Higgs & Cunningham 2008; Higgs 2008) raises questions about whether creative digital education providers should be overly concerned to identify fields with particular skill requirements to be satisfied, or rather be developing more generic, knowledge and technical skill-based graduate attributes that can readily be honed by employers to suit their particular needs. At CQU University Australia (CQU) multimedia program academics endeavour to strike a balance informed by ongoing course2 and program reviews, benchmarking with other university courses and programs, and industry consultation. It is considered that in a field where standards, protocols, technology and practices are rapidly evolving a fundamental error would be to bootstrap skill development to any one of them. Notwithstanding that creative and technical skills, aptitudes and practices specific to the discipline should fundamentally be developed, CQU data and experience concurs with the findings of Haukka:

Employers ranked team work skills, communication skills, motivation, problem-solving skills, and adaptability as the most important skills and attributes to their workplaces (6).

The Collaborative Multimedia Project A & B courses constitute a compulsory capstone experience in the Bachelor of Multimedia Studies degree (BMMSt) at CQU. Completing the courses over two terms (24 weeks) students accrue 12 credit units toward the 144 required to graduate. The objective is to provide students with an opportunity to apply knowledge, skills and experiences accumulated throughout the degree program, to a ‘real-life’ major project undertaken for an external ‘client’. Students work in teams that resemble those typically found in small to medium creative enterprises that offer digital and new media consultancy and production services in Australia (Barrett 2001; Higgs et al 2007; Noacco 1995). They are challenged to organise, initiate, plan, execute and evaluate a digital content project. They learn and practice requirements elicitation, technical specification, project development, management methodologies, and quality management processes and procedures. According to roles that each has negotiated through a team contract agreement they then contribute to the collaborative realisation of the project. The principle elements of engagement theory (Kearsley & Shneiderman 1998) are operational in these courses.

Because of the regional nature of the CQU footprint, and the high percentage of learners who study in flexible (distance) mode, a unique aspect of the makeup of some of the teams is the broad geographic dispersal of members. Many team members may not ever meet each other, their supervising lecturer, or their client, face-to-face. This necessitates dependence on virtual collaboration tools, techniques and practices. Even where there is co-location these practices are encouraged.

The projects

In 2008 and 2009 two significant interactive training manual projects were undertaken for QAL in Gladstone. Business Improvement Coach for QAL, Ms Ruth Kinslow, contacted Dr Ashley Holmes, Head of the BMMSt program at CQU, seeking an interactive audiovisual solution to a set of related workplace risks that had been identified in relation to Pump Maintenance Crew training. These crews are responsible for servicing heavy industrial equipment in hazardous environments, with

2 Some universities use the word “course” to refer to a program of study such as a degree. CQUUniversity uses the word “course” in the way that some institutions use the word “subject”.
inherent procedural and occupational health and safety risks. The equipment is critical for the production of alumina.

The extant documentation of the equipment and the site-specific maintenance practices was not consolidated in a readily accessible format. In addition, the imminent retirement of experienced senior staff with accumulated technical know-how and tacit procedural knowledge was perceived as a risk. It was acknowledged that for a number of reasons this information was not effectively and meaningfully passed on to trainees during the routine maintenance training program. This risk required swift action to remedy.

For the benefit of new alumina producers and maintenance crew members the knowledge specific to plant item maintenance held by senior team members needed to be recorded and formalised to be compatible with QAL information systems. The projects also needed to comply with other corporate requirements such as OH&S, risk assessment, corporate style manuals, confidentiality, and with VET principles.

Requirements elicitation, scoping the project and identifying the most appropriate delivery platform were part of the brief issued to the student teams. It was envisaged that the project outcomes would be CD-ROM distributed manuals incorporating short, time-based audiovisual demonstrations, printable instructions incorporating text, diagrams and photomedia elements, and accessed via an interactive interface.

The first, developed and produced during the period March to October 2008 concerned general safety induction, foundation training manuals and Pump Overhaul and Maintenance Procedures (POMP) for the Elliot Turbine and Gearbox.

The second, developed and produced during the period March to October 2009 documented procedures relating to assembly and overhaul of two slurry pumps:

- Worthington 12LN32
- Warman 8/6 FAN

This training manual also incorporated quizzes to test knowledge transfer and comprehension.

Keys roles in the inter-organisational collaboration

Reflective analysis of the conduct of the two projects has identified four key instrumental roles:

- QAL project leader/translator
- QAL industry trainee and technical expert liaison
- CQU educational expert
- Student project teams

QAL project leader/translator

QAL regularly offers industry placement opportunities and traineeships for university students and graduates in a number of fields. However, the type of team-based collaboration described in this paper is unusual. There are no standard systems or practices instituted to accommodate the arrangements that transpired as there are with the more typical placement and traineeship arrangements.

The QAL project leader and translator, Ruth Kinslow, was the originator of the projects. She found herself in the position of blazing a trail through QAL systems to achieve what was required to get
things going. It is significant that she had prior experience with both the industrial culture at QAL and the educational culture at CQU. Her knowledge of the systems and operations of both helped ensure that the needs of both organisations were satisfied – for example: the information systems and contractual and training requirements at QAL; and the semester timetable and the assessment routine at CQU.

Ruth proved adept at liaising between the QAL parties who would need to be engaged in order to bring the project to fruition, such as:

- area supervisors, management and executives,
- technical experts and trainees,
- human resources,
- information systems,
- marketing and corporate image,
- contract and legal.

In some cases the officers involved were quite unused to dealing with ‘outsiders’, and in other cases what was asked of them was considered to be outside of the routine. For example, the ‘supply contract’ between the organisations involved no financial transaction.

It is for these reasons that the role is referred to as ‘translator’. Ruth became the overseer of the whole project and the single point of contact for all parties with respect to forms, authorities, safety, funding and operations.

QAL industry trainee and technical expert liaison

Michael Pope is an experienced trade person employed in the pump maintenance section at QAL at Gladstone. At the time of the instigation of these projects he was a mature age trainee undertaking the Certificate IV in Competitive Manufacturing. It was Michael who, in a workshop with the Business Training Coach, suggested the possibility of involving an outside organisation to assist with resolving the training bottlenecks previously outlined in this paper. He believed that video of suitably professional quality would provide a means of effectively recording demonstrations of technical procedures by key expert staff. He suggested that when collated in a readily accessible format with other procedural and technical documentation media, the whole package could provide an efficacious training aid. Whilst the practice of audio visual recording of procedures for training purposes was becoming more common at QAL, the facilities and resourcing for post-production were almost non-existent. Also significantly, the need to realise the production of such training aids had not been an organisational priority. In partnership, the QAL project leader and the QAL industry trainee succeeded in escalating the prioritisation of the proposed projects.

Michael’s internal roles during the projects included: liaison with plant maintenance engineers to schedule demonstrations that would be recorded; and, liaison with process and resource owners to supply textual and visual documents. He also provided expert advice to the student team during video capture and post-production, assisted with provision of voice-over talent, and participated in providing feedback on designs and testing of production prototypes.

It is significant that subsequent to working closely with both student project teams, Michael Pope was awarded Regional and then Queensland State Trainee of the Year in 2009. He attributes that a factor in achieving this recognition was the experience of his collaborative involvement with CQU multimedia students.
CQU educational expert

At CQU there are three terms (semesters). The Collaborative Multimedia Project A and B courses are offered two times a year. The first round begins in term one and carries through to the end of term two. The second round commences in term two and finishes in term three just before the next round commences again in term one of the following year. The number of students commencing in a term varies. In the two terms when these projects were undertaken there were a total of 40 students in 2008 and 33 in 2009. The students can be based on any one of CQU’s four capital city campuses or three Central Queensland regional campuses or indeed from anywhere in the world, studying in ‘Flex’ (distance) mode. In 2008 there were nine student teams and in 2008 there were seven. Each team worked on a separate project.

The range of projects on offer is quite diverse—from 2D and 3D movies to web sites to content management systems to educational media and interactive games. On the whole projects are usually solicited from not-for-profit organisations, but as in the topical cases, projects that might not otherwise be outsourced to industry because of lack of budget are considered. Proof of concept projects that might not be attractive to commercial firms because they are experimental in nature are also considered. Care is taken so as not to take on projects that an organisation would otherwise take to the market for commercial tender or commission. The standard project contract insists that student teams will not be paid fees; but expenses are to be covered.

The course coordinator collates registrations of interest. Interested parties are informed of their obligations and responsibilities with respect to regular communication with the nominated team contact, timely provision of feedback with respect to project deliverables, liaison with other stakeholders, supplying required resources in a timely manner, and involvement in the assessment of the performance of the team. The potential client must assure the coordinator of their ability to commit for the entire 24-week duration. Only when agreement to these conditions is established can a project be listed for students. Prospective clients must understand that is possible that no students can be found for a proposed project in a given term. And, conversely it can be that there are insufficient projects of suitable quality on offer; in which case the coordinator must make alternative arrangements for students.

Students can nominate the project in which they wish to be involved. Some shuffling occurs if the skill-base required for a given project dictates the need. There are usually between three and six students in a team.

The course coordinator is the overall supervisor for all teams, and has the assistance of campus tutors at the four capital city campuses. These tutors may source potential projects for their teams but ultimately the coordinator is responsible for ensuring that there are sufficient projects that will provide suitable challenge across the board.

Course instruction and learning resources are provided via a learning management system (LMS)—in these cases it was Blackboard. Each team has a delegated area within the system. This provides team chat, discussion board and file storage and sharing facility. Teams may elect to migrate to an alternative collaborative virtual venue once they are established.
The coordinator advises teams as required, assesses the performance of students in teams that he/she is directly responsible for, and maintains liaison with the clients as required. However, once a project is initiated the students are expected to assume control of all aspects, guided by a schedule of procedure prescribed in the course instruction. The main elements of this schedule are outlined in Table 1. The coordinator moderates the ongoing assessment of all teams and provides feedback to the tutors.

The coordinator is present as an observer, advisor and assessor of student performance during key presentations to the client and stakeholders. In the cases of these projects, these presentations took place via tele or video conference.

The assessment regime is rigorous for the tutors, the supervising coordinator and the students alike. In all, over the two terms there are 19 items of team assessment to be submitted and two items of individual report and peer review. There is also a team review mark provided by the client and a tutor’s evaluation of individual performance. The final mark allocated to each individual is combination of all of these team and individually awarded factors.

Student project teams

In 2008 the team working with QAL consisted of five members; from Townsville and Mackay in Queensland, from Lismore in New South Wales, from Dubai and from Taiwan. In 2009 there were six team members, somewhat less widely dispersed in that they were all from Queensland, with four based in Bundaberg, one in Rockhampton and one in Brisbane.

For each project team, a site visit to QAL Gladstone by two team nominees was arranged. While the purpose of these visits was primarily orientation, opportunity for media recording and transfer of documents was also afforded. Subsequent visits were organised as required. Before they could enter the site students had to undergo safety training and induction.

Guided by course instructions and resources, students organised themselves into roles and nominated a single point of contact for client and supervisor liaison. At the outset they negotiated a team agreement which included a conflict resolution strategy.

Team members met regularly using virtual meeting technology including LMS chat (or MSN or similar), discussion board and Skype. They were expected to keep meeting records, individual timesheets, and an intellectual property register which tracked all items they created and those that were received from the client with appropriate version control and records of where the items were stored. Weekly status reports were submitted to the client and to the supervisor.

As can be seen from the outline at Table 1, the activities of the first term were mainly concerned with project definition, concept development, design issues, project planning and the establishment of procedures for production management and quality control. In term two the teams swung into iterative production mode, presenting Alpha and Beta prototypes for evaluation and testing before presenting the final product for acceptance. A trial audit was performed by the supervisor during the production phase to determine whether and how effectively the project and quality management procedures they had established earlier were being followed.
Evaluation

The products of the project teams met their acceptance criteria and are reported to be serving their purpose at QAL. No quantitative study has been conducted, but the authors are in reflective agreement that, in the instances described in this paper the inter-organisational collaboration provided win-win outcomes for the key stakeholders.

For the QAL client as a whole the benefits were: the building of knowledge, increased productivity, and improved safety. The mature workers passing on their knowledge felt they were leaving a tangible legacy and that their knowledge and skill was being recognised. For the trainees and other plant maintenance workers learning on the job, the product facilitates fast tracking of learning and lessens the risk of learning ‘the hard way’ through lack of detailed practical tuition.

The university students gained experience of effective teamwork in a configuration similar to that which may exist in small to medium consulting firms and public service project teams. The projects were authentic, yielding real benefit if successful, and conversely, with the potential for real risks if not: risk of subject failure; waste of resource commitment on behalf of QAL; and, ‘loss of face’ for students and their supervisor and the University. Even the students who could not visit the site gained insights into the operations of an industry they would likely have not otherwise. The students had to overcome the communication barriers inherent in their geographical separation to achieve collaboration. Each team took ownership and creatively resolved their product in a unique way.

For the QAL project leader and the CQU educational expert there was significant satisfaction that their objectives had been achieved. However both agree that their tasks in organising the inter-organisational collaboration could have been facilitated by systems design to support this particular kind of activity.

In many medium to large organisations there are systems and procedures in place for handling the more common work placement and traineeship arrangements. The tasks involved in organising these have been somewhat routinised and resources allocated. Similarly universities and faculties are accustomed to finding places for individual students where cooperatives and placements are instituted and in some cases required by accrediting bodies as part of a course or a program of study.

The unique requirement for the multimedia degree to source team-based co-operative arrangements as described in this paper is yet to be incorporated into the administrative functions at CQU; perhaps because the accrediting body does not require it? In the absence of any other possibly more appropriate professional body, such as the Australian Interactive Media Industry Association, offering accreditation, the program committee seeks accreditation from the Australian Computer Society (ACS). In its 2009 review the ACS accreditation committee commended the Collaborative Multimedia Project A and B courses as providing exemplary capstone experiences. Yet, in the absence of formal requirement for such experience, the Faculty is slow to effectively recognise and support the administrative function of sourcing and managing relationships with organisations that might benefit from this type of team-oriented collaboration.

The arrangement forged between the QAL project leader/translator and the CQU educational expert was unique in that it lasted for two successive years. Other projects have come and gone on a more
ad hoc basis. With corporate change and organisational change occurring across the board it is difficult for an academic with a full teaching/research workload to maintain relationships and network with appropriate outside organisations.

The QAL project leader/translator met with internal resistance when initiating each project. In the first instance, such a project had never been successfully accomplished before (though there had been previous unsuccessful attempts involving other unrelated parties). The potential benefits had to be ‘sold’ to the resource owners whose cooperation would be essential. Cataloguing of the resources required—finding the most up-to-date drawings, instructions, picture process maps and so on—needed to be prioritised over more routine tasks. Budgets for expenses needed to be established and approved.

The second time around, the initial resistance had been overcome and the value of such an exercise somewhat more appreciated by those stakeholders more immediately involved at QAL. But prioritising the second project so that the supply of data and resources could be timed to coincide with the university calendar almost became too hard. Little heed is paid to small time projects under the stresses that management changes and shifts in strategy cause, especially where there has been little or no financial investment to date.

Other responsibilities proved demanding for the QAL project leader, including: scrutiny of captured video and images for possible safety and housekeeping breaches; working with limited resources; ensuring content provided was suitable for students’ requirements.

In short, undertaking these projects required considerable commitment of those persons undertaking the key roles—beyond what was in their job descriptions. The fact is that this type of role is yet to appear in any job description!

In order to validate project gains and, for such programs to continue, the commitment required needs to be formally and systematically recognised within the organisations involved in the partnership. Without this step the innovation involved may fail to become an integral part of either business. The projects risk becoming stand alone and the potentially significant gains lost over time.
<table>
<thead>
<tr>
<th></th>
<th>A/ QAL Project leader/translator</th>
<th>B/ QAL industry trainee & technical expert liaison</th>
<th>C/ CQU educational expert</th>
<th>D/ CQU student project team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact with</td>
<td>Commence negotiation and establish resource commitment by QAL industry management group.</td>
<td>Selection of equipment that was to be the subject of the project</td>
<td>Communication of CQU objectives and requirements to A: • need for initial brief to attract student team interest • overall curriculum objectives • specific feedback commitment expectations • timeline according to assessment req.</td>
<td>Course enrolment subject to satisfaction of prerequisite requirements. Election or allocation to team. • personal evaluation & skills analysis • delegation of roles within team • team agreement incl. conflict resolution strategy.</td>
</tr>
<tr>
<td>Development of QAL project schedule to concur with CQU course schedule and assessment requirements</td>
<td>Communication of • project scope • requirements</td>
<td>Outline course requirements to D. Facilitation of D Team contract: compliance with course template and in liaison with QAL & CQU legal.</td>
<td>Initiate communication with A. Commence requirements elicitation – in consultation with A & B.</td>
<td></td>
</tr>
<tr>
<td>Preparation of work contract. Organisation of transport and accommodation for site visit by reps from D.</td>
<td>Technical, Safety and Risk assessment for CREF</td>
<td>Ongoing course- related instruction and management. Assessment and feedback re initial items.</td>
<td>Commence needs analysis and technical specification.</td>
<td></td>
</tr>
<tr>
<td>Management and liaison re site visit by D reps: • provide safety clothing and equipment • site induction • introduce visitors to key stakeholders • facilitate requirements elicitation & needs analysis.</td>
<td>Equipment and work area discussed and shown to visitors. Ensure resources available for project on schedule: • equipment available for filming • technical information and documentation • ongoing support and assistance for D to meet product and project requirements.</td>
<td>Confirmation with A that QAL requirements are being met. Progressive assessment of deliverables and feedback to D.</td>
<td>Site visit to QAL by selected representatives. Purpose is mostly for orientation to project and needs analysis. However it has been pre-established that some members will conduct audiovisual recording of maintenance procedures on the occasion of the visit.</td>
<td></td>
</tr>
<tr>
<td>Involvement with interim presentations via teleconference. Liaise with other QAL stakeholders to be present by videoconference link for final Term 1 assessment presentation by D. Coordinate QAL feedback on presentations.</td>
<td>Attendance at presentations out of normal working hours.</td>
<td>Ongoing liaison with A. Organise teleconferences and videoconference. Ongoing supervision of team D: • provide advice/feedback • formal assessment and grading.</td>
<td>Presentation to client and stakeholders of: • concept brief, • business case, • proof of concept, • design document and • production plan. Individual report and peer review submitted for assessment.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Schematic of the inter-organisational collaboration

QAL and CQU core project team collaborative elements: Term 1, 12 weeks duration, March - June
<table>
<thead>
<tr>
<th>A/ QAL Project leader/translator</th>
<th>B/ QAL industry trainee & technical expert liaison</th>
<th>C/ CQU educational expert</th>
<th>D/ CQU student project team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuing liaison with B, C, D and QAL management.</td>
<td>Continue to supply project resources and technical documents as per project plan.</td>
<td>Continuing liaison with A & D.</td>
<td>Course enrolment subject to satisfaction of prerequisite requirements. Project review and re-orientation. Team leader communicates directly with A and reports to C.</td>
</tr>
<tr>
<td>Ongoing assessment and feedback of deliverables.</td>
<td></td>
<td></td>
<td>Establish quality management procedure & change management plan and submit for assessment and feedback. Propose test and evaluation plan. Team is in production mode.</td>
</tr>
<tr>
<td>Liaises with QAL stakeholders as appropriate for attendance at alpha and beta prototype presentations. Coordinates QAL prototype testing evaluation and feedback as required.</td>
<td>Involved with alpha and beta prototype presentations. Participates in QAL evaluation and feedback as required. Support and assistance for students to meet product and project requirements.</td>
<td>Facilitates organisation of teleconferences/videoconferences involving D and client & stakeholders. Attends presentations. Assesses and provides feedback to D.</td>
<td>Prototypes presented to client at alpha and beta milestones. Tests and evaluations are conducted and outcomes recorded. Changes implemented if required.</td>
</tr>
</tbody>
</table>
References

Higgs, P. & Cunningham, S. (2008) "Creative Industries Mapping: Where have we come from and where are we going?" in Creative Industries Journal Volume 1 Number 1 pp 7-30. Intellect Ltd.

